360° Webcams for Zoos and Aquariums

Team 12

Nathan Cool, Zach Newton, TJ Yacoub, Sam Abdeltawab, Ian Jamieson, and Alan Negrete

Advisor: Dr. Henry Duwe

Client: Chris James (True 360)

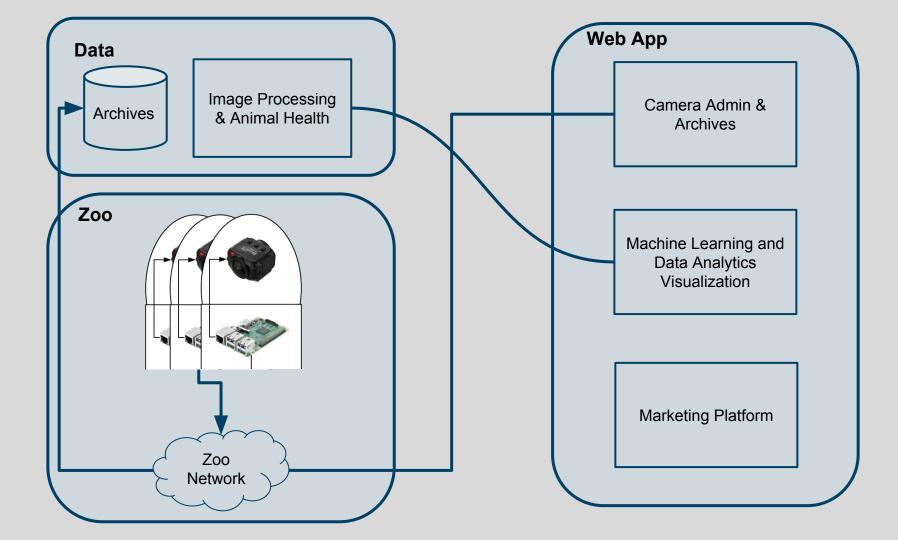
sddec18-12.sd.ece.iastate.edu

Overview

- Project Plan
- Design Document
- Conclusion
- Q&A

Project Plan

Problem Statement


- Poor video quality
- Footage is not interesting
- Animal may not be active
- Difficult to maintain

Our Solution

- Scalable SW/HW system
- Administrative portal
- Animal health monitoring
- Marketing tools

Functional Requirements

- 360° Camera System
 - Live stream up to 20 cameras at 4K resolution (30FPS and bitrate is 35 Mbps)
 - Capture photos in 4K resolutions
 - Archive past live streams for future viewing
- Administrative Portal
 - IT staff must be able to control/monitor the webcams
 - IT staff must be able to view archived live streams

Functional Requirements

- Marketing Tools
 - Marketing staff must be able to integrate logos into live streams
 - Sponsors can "rent" allotted times for selected streams to display their logos
- Animal Health Monitoring
 - Zoo curators must be able to monitor animal activity remotely
 - Zoo curators must be able to revisit video clips throughout the day
 - Send alerts to zoo curators when there are abnormalities

Non-Functional Requirements

- Cameras should be operable in many environments
- For database backups, Use AWS snapshot feature
- For scalability, the backend will rely on AWS
- For remote maintenance, Snappy will be used

Potential Risks & Mitigation

- Zoos do not have fast enough internet
- Camera system does not work underwater
- Zoos might want to use existing hardware (e.g., servers)
- Research efforts consume significant time
- Ethical issue of analyzing video clips with visitor's faces

Market Survey

- While some zoos may use webcams, many lack 360° capability
- Camera setup and maintenance is tedious
- Zoos don't have large IT teams.

Example: San Diego Zoo

- Low-quality/unstable live streams
- Located on zoo's site rather than widely used platform (e.g., YouTube)
- Non-interactive and non-rewindable (static video)

Resource/Cost Estimate

- Unit Cost
 - **Camera: \$800**
 - Raspberry Pi board: \$35
 - Cables, case, etc: \$100
 - **Total = \$935**
- Storage Costs
 - Server/storage: \$1050 (3-5TB of data)
- Per-zoo example: Des Moines Zoo
 - \circ Assume 10 cameras
 - (10 * unit cost) + per-zoo costs
 - Total = (\$935 * 10) + \$1,050 = \$10,400

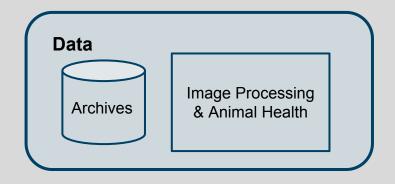
System Design

Detailed Design - Web App

• Cameras

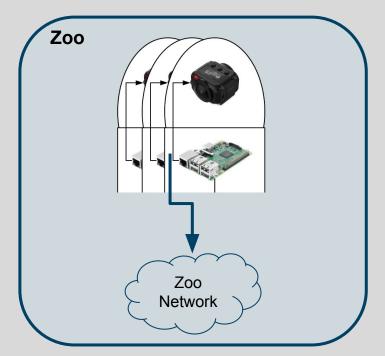
- View/edit camera data and settings
- Control cameras (on/off, start/stop live streams, etc.)
- Archives
 - View/manage archived footage
- Technologies
 - Client: React.js + Redux
 - Server: Node.js
 - Authentication: Firebase

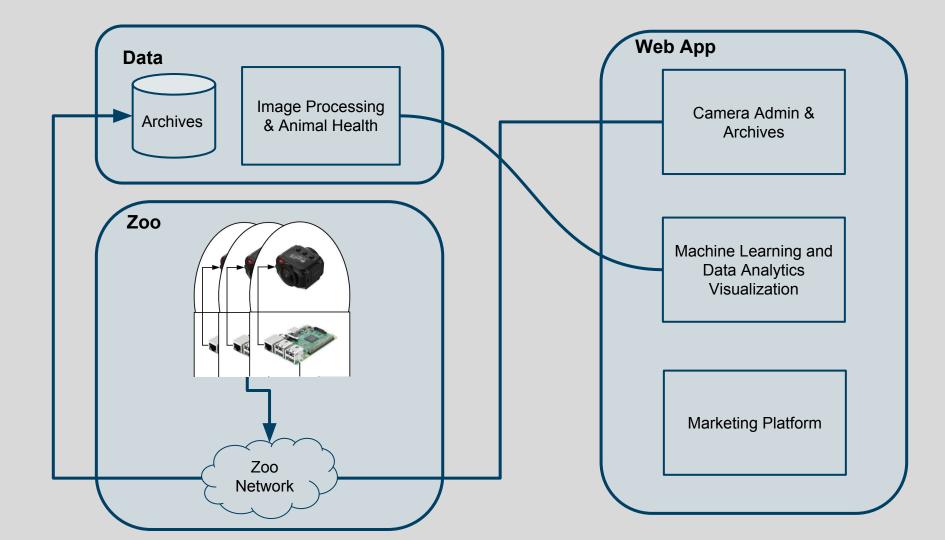
Web App	
Camera Admin & Archives	
Machine Learning and Data Analytics Visualization	
Marketing Platform	


Detailed Design - Web App

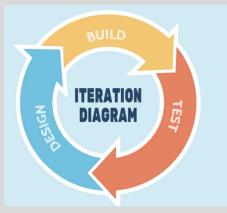
- Animal Health Monitoring
 - Display animal activity data
 - Provide alerts of abnormalities to staff
- Marketing
 - Facilitate sponsorships
 - Extract footage of active animals
- Technologies:
 - Data Visualization: D3.js

W	/eb App	
	Camera Admin & Archives	
	Machine Learning and Data Analytics Visualization	
	Marketing Platform	


Detailed Design - Data


- Store video archives
- Analyze video archives
 - $\circ \quad \text{Image processing} \quad$
 - Activity monitoring

Detailed Design - Zoo


- Can contain one or many cameras
- Each camera controller is subscribed to its own channel
- Devices
 - Garmin Virb 360° (Works on all OS's)
 - Raspberry Pi: Runs ARM OS's
- Technologies
 - Python, FFmpeg, Pusher client

Iterative Test Plan

- Step 1: Design & Develop a component
- Step 2: Independently test component
- Step 3: Integrate and test with existing system
- Step 4: Test components against functional/non-functional requirements
- Step 5: Full system tests to evaluate system stress tolerance

Test Plan - Example

Archiving Video Test

- Goal: Meet functional requirement "IT staff must be able to view archived live streams"
- Process:
 - 1. Live stream and archive video for 8 hours
 - 2. Ensure all video files have been stored in server at zoo
 - 3. Check if all video files are accessible from the Web App
 - 4. Check if a specific date and time is accessible
 - 5. Verification

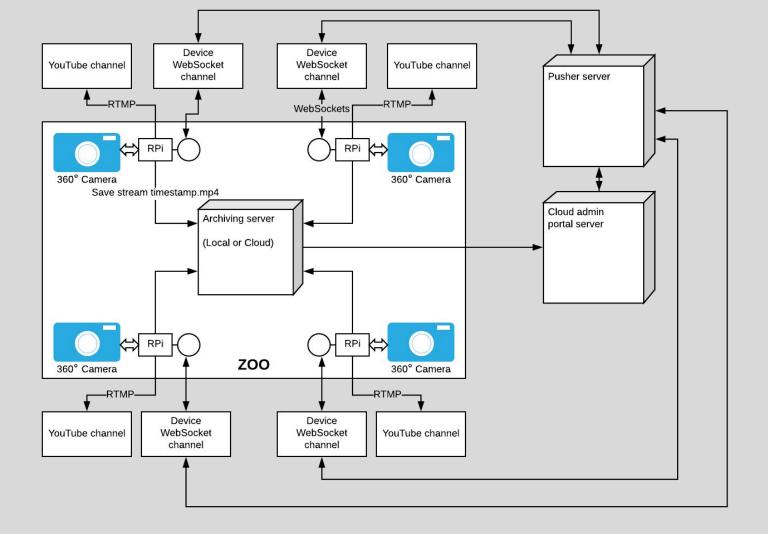
Prototype Implementations

- Earlier devices/prototypes
 - Poor SDKs & Developer support
 - Could not meet non functional requirements
- Current Prototype & Meeting Requirements
 - External hardware to communicate with camera
 - Easily set up & interact with minimum maintenance

Conclusion

Project Milestones & Schedule (Spring 2018)

- Identify hardware/software and design system (done: Feb. 28)
- Develop software to connect webcams to YouTube (done: Mar. 15)
- Develop software to remotely control webcams (done: Apr. 15)
- Develop software to archive live video streams (in progress)


Project Milestones & Schedule (Fall 2018)

- Develop software which allows logos and advertisements to be embedded in a live stream (*due: Sep. 30*)
- Develop software which uses machine learning to observe animal health and behavior (*due: Nov. 22*)
- Develop software which assists in curating potential marketing materials from existing video archives (*due: Nov. 22*)
- Deploy the system at a zoo/aquarium (due: Nov. 22)

Thank you!

