

360° Webcams for Zoos and Aquariums

Final Report

Nathan Cool, Ian Jamieson, Zach Newton, TJ Yacoub, Alan Negrete, Sam Abdeltawab

Table of Contents

List of Figures 4
List of Tables 4
General Information 5

Part 1 - Introduction 6
Acknowledgments 7
Problem/Need Statement 7
Intended Users and Uses 8
Market Survey 8
General Assumptions and Limitations 9

Part 2 - Design 10
Concept Description 11
Functional Requirements 12
Non-Functional Requirements 13
Constraints 13
Operating Environment 14
Risk Identification and Management 15
Resource Requirements 16
Functional Decomposition 16
Standards 16
Deliverables 18

Part 3 - Implementation 19
Design Decisions 20
Work Breakdown 23

Part 4 - Testing 24
Testing Plan 25

Part 5 - Related Work 27
Market Survey of Related Products 28
The Rationale for Our Project 28
The Rationale for Related Products 28

Part 6 - Summary and Concluding Remarks 29
Summary 30

Appendix I - Operation Manual 31
Getting Started 32
System Requirements 32
Embedded Environment Setup 32
Local Environment Setup 33

Page 2

Cloud Environment Setup 34
Accessing the Source Code 36
Accessing AWS Services 36
Associated Costs 37
Troubleshooting 37
Known Bugs and Other Issues 38

Appendix II - Alternative Designs 39
Alternative System Design I (CPRE 491): Local Implementation 40
Alternative System Design II (CPRE 491): Initial Cloud Architecture 40

Appendix III - Other Considerations 43
Lessons Learned 44

Appendix IV - Definitions 45

Appendix V - References 47

Page 3

List of Figures

Figure 1: System Block Diagram 16

Figure 2: Initial Interface Design 21

Figure 3: Work Breakdown Diagram 23

Figure 4: Process Flow Diagram 26

Figure 5: Gitlab CI/CD Pipelines 34

Figure 6: Gitlab Group CI/CD Variables 35

Figure 7: AWS Cloud Architecture 36

Figure 8: Localized Design Approach 40

Figure 9: Initial Cloud Design 40

Figure 10: Initial Database Design 42

List of Tables

Table 1: Functional Requirements 12

Table 2: Non-Functional Requirements 13

Table 3: Constraints 13

Table 4: Definition Listings 46

Page 4

General Information

Team Details

● ID: sddec18-12
● Email: sddec18-12@iastate.edu
● Website: sddec18-12.sd.ece.iastate.edu

Team Members

Name Roles

Nathan Cool Front-End Development, Project Manager, Webmaster

Ian Jamieson Computer Vision Development, Graphics Lead

Zachary Newton Front-End Development Lead, Scrum Master, QA

Tarek (TJ) Yacoub Microservices Development Lead, QA

Alan Negrete Front-End Development, Microservices Development, QA

Hosam (Sam) Abdeltawab Embedded Development

Dr. Henry Duwe Advisor

Christopher (Chris) James Client (True 360)

Page 5

Part 1 - Introduction

Page 6

Acknowledgments

We would like to acknowledge our client, Christopher James, and our advisor, Dr. Henry Duwe, for
their contributions to our project. Chris provided our team with embedded boards and 360° webcams
and funded all monthly expenses associated with project development. He also attended team
meetings in order to provide feedback on our progress. Dr. Duwe attended team meetings and
provided our team with invaluable technical advice and feedback on our progress.

Problem/Need Statement

True 360 is an Ames-based startup founded by ISU business undergraduate Christopher James.
True 360’s mission is to provide zoos and aquariums with access to immersive 360° digital
experiences. Our project, 360° Webcams for Zoos and Aquariums, is the first phase necessary to
bring True 360’s mission to reality.

With our project, True 360 hopes to provide solutions to three major problems/needs. First, zoos and
aquariums do not have access to an easy-to-use 360° webcam solution for their exhibits. While there
are zoos and aquariums that currently use webcams (some with 360° capabilities) for various
purposes, no solution currently exists to act as a centralized (remote) connection and control hub for
all of their webcams. Second, zoos and aquariums are always looking for ways to boost their social
media presence and improve their marketing techniques, both to attract new visitors and improve
public awareness of issues such as animal health and wildlife conservation. Finally, zookeepers,
animal health professionals, and other staff members are currently required to visit each exhibit on a
regular basis in order to monitor the animals. This process is time-consuming, which means staff
members have less time to focus on other important responsibilities.

Our team—in collaboration with True 360—aims to provide solutions to these problems/needs. By
developing a system that allows zoo and aquarium staff members to connect to and remotely control
multiple 360° webcams, the necessity of physically interacting with each webcam on a regular basis
will be removed. The system will allow for webcams to be installed in both above-ground (indoor and
outdoor) and underwater exhibits and controlled via a central web application. Conveniently, this
application will help us solve the aforementioned marketing need and animal monitoring problem.
With our system, zoos and aquariums will be able to constantly capture 360° ; of animals, which can
be extracted for use in educational live streams, promotional content, monitoring animal activity, and
even archival purposes.

Page 7

Intended Users and Uses

We must take into account three user perspectives and their respective uses for the system:

The Zoo (or Aquarium) Marketing Team

The marketing team’s role is to promote the facility through various social media outlets. It is essential
that our system takes into account their need for easy access to all footage/clips captured by the
system, as well as a way to extract the most useful content for promotional uses.

The Zoo (or Aquarium) Curators

The zoo curators are responsible for monitoring and caring for the animals and their exhibits.
Knowing the reality of staffing limitations, curators are always on the move in order to keep track of all
of the animals. As a result, our system must focus on providing easy access to captured footage,
particularly when it involves the presence of animals. That way, in an emergency or undesirable
circumstance, curators can review archived footage in order to identify the root cause of an issue.

The Zoo (or Aquarium) IT Department

Marketing team members, curators, and other staff members are required to focus on their own jobs
and cannot get caught up in the technical aspects of the tools they rely on every day. As a result, IT
staff members are vitally important to the successful adoption of our system. Thus, we must take into
account the installation, configuration, and long-term maintenance requirements necessary to keep
the system up and running. The system must provide remote access to commonly used functionality,
as well as minimize the complexity associated with providing technical support.

Market Survey

Per the Final Report assignment requirements, details regarding market survey information and
related products/work have been moved to Section 5 (Related Work), which can be found below or by
consulting the Table of Contents.

Page 8

General Assumptions and Limitations

Assumptions

Our system will be responsible for:

● Webcam management
● Video archiving (via a connected cloud-based service)
● User management (multiple user types)

Our system will not be responsible for:

● Financial transactions (facilitation, record-keeping)
● Communication-related functionalities
● Stream management

Technical Assumptions:

● Webcams will be powered via standard 120V wall outlets
● Zoos/Aquariums using the system provide wired/wireless Internet access within the facility
● IT department staff members will set up the cameras

Limitations

Our system will assume the following limitations:

● Reliance on manufacturer-provided APIs and SDKs for interacting with webcams
● Limited connection mediums to webcams via WiFi, Ethernet, or USB
● Potential bottlenecks when collecting high-resolution footage (1080p, 4K) due to server

storage cost/space and Internet bandwidth at zoos and aquariums

Page 9

Part 2 - Design

Page 10

Concept Description

The general design concept for our system revolves around the development of four primary software
components: front-end, back-end, embedded, and computer vision. The back-end is comprised of a
microservices architecture that various AWS components that help integrate all of the other parts of
the project. The front-end client allows the zoos to view and download clips, as well as control the
cameras. The embedded program works with the camera and controls how the camera interacts with
the microservices and the front-end. The computer vision component was built to lower the AWS cost
and improve the quality of videos displayed on the website.

Page 11

Functional Requirements

Status Reference

● COM: Completed
● DEP_1: Deprecated (no longer required)
● DEP_2: Deprecated (no longer required, per client’s request)
● INP: In progress
● BLOG: In backlog (not started)

Modules

● APP: Web application
● CV: Computer vision
● EMB: Embedded board + camera
● MIC: Microservices
● SYS: Combination of multiple/all system modules

Table 1: Functional Requirements

Listing Status Module(s) Description

FR_01 DEP_2 SYS Stream video in various resolutions.

FR_02 DEP_2 SYS Capture photos in various resolutions.

FR_03 COM SYS Start and stop recordings.

FR_04 DEP_2 SYS Start and stop streams.

FR_05 COM SYS View current camera status.

FR_06 COM APP Staff must be able to view archived footage.

FR_07 COM APP Staff must be able to download archived clips.

FR_08 COM SYS Machine learning to detect activity.

FR_09 DEP_2 SYS Alerts to staff for abnormalities.

FR_10 DEP_2 SYS See animal activity over a period of time.

FR_11 BLOG SYS Staff must be able to embed logos on streams/recordings.

FR_12 DEP_2 SYS Sponsors can rent allotted times for certain streams.

Page 12

Non-Functional Requirements

Status Reference

● COM: Completed
● DEP_1: Deprecated (no longer required)
● DEP_2: Deprecated (no longer required, per client’s request)
● INP: In progress
● BLOG: In backlog (not started)

Table 2: Non-Functional Requirements

Listing Status Description

NFR_00 COM Webcams must be able to operate in various types of
environments.

NFR_01 COM Persistent data storage with automatic periodic backups.

NFR_02 COM The system must scale with user growth and usage.

NFR_03 DEP_1 The system must be remotely maintained via Snappy for
Ubuntu Core.

Constraints

Status Reference

● OK: Constraint is still in effect.
● DEP_1: Deprecated (no longer required)
● DEP_2: Deprecated (no longer required, per client’s request)

Table 3: Constraints

Listing Status Description

C_01 OK The system must be able to function in different environments with varying
temperatures.

C_02 OK Many of the webcam options have limited APIs/SDKs to work with - if any at
all.

C_03 DEP_2 A working system requires high bandwidth to ensure stable and high-quality
streams.

C_04 OK Very limited development time with a physical embedded device and Garmin
camera.

C_05 DEP_2 Each zoo will have a local server and storage for archiving footage.

Page 13

Operating Environment

The major physical components of the system include one or more 360° webcams and any central
computing hardware necessary for connecting/controlling the webcams and managing the captured
footage. In order for the system to maintain a normal operational state, there are many environmental
factors which must be taken into account.

Zoos and aquariums will place webcams in a variety of locations, including both above-ground (indoor
and outdoor) and underwater exhibits. Webcams placed above-ground and outdoors must be able to
operate while exposed to the local weather. Webcams placed above-ground and indoors must be
able to operate while in glass-covered exhibits or in areas where visitors’ devices may tax the network
(if public/staff network traffic is not separated). Exposing electronics to underwater conditions
inevitably poses many potential problems which will have to be addressed (e.g., cable exposure,
underwater webcam temperature regulation).

Regardless of where webcams are placed, there are many universal environmental factors which
must be considered in order to maintain a normal operational state. The webcams must have
constant access to ample power, a stable and strong (wired or wireless) Internet connection, and a
case to physically protect the webcam unit. Fortunately, our client will be responsible for the process
of fabricating a case to fit the webcam model used in the system.

One of the most important environmental factors which must be considered is the presence of
animals. The webcam unit must be durable enough to withstand the impact and pressure of strikes,
bumps, bites, and other animal interactions. Any cables (e.g., power, Ethernet, USB) connected to
the webcams must be installed in such a way as to remain out of the sight/reach of the animals.

In addition to the webcams, we must take into consideration the computing/storage hardware and the
software (web application) components and their respective environments. Any computers (desktops,
servers) used must be stored in a secure indoor and temperature-regulated environment in order to
avoid issues such as overheating and unauthorized access. The web application must be developed
with digital security in mind.

Overall, these environmental factors represent our basic understanding of and assumptions about
how zoos and aquariums will use the system. They do not encapsulate every possible factor, as there
will inevitably be some variance between facilities/users.

Page 14

Risk Identification and Management

Potential Risk: A team member is considering dropping the course.
Management: Maintain open communication amongst team members in order to address and
resolve any issues/impediments in a supportive manner. In the event that the situation occurs,
communicate with course instructors, our faculty advisor, and the team member in order to mitigate
any potential impacts on progress.

Potential Risk: The client loses interest in the project or the project is discontinued.
Management: Team members should think about contingency plans and/or alternative projects. In
the event that the situation occurs, immediately contact course instructors and our faculty advisor to
determine how to proceed.

Potential Risk: A major hardware component is damaged.
Management: Team members should take care to ensure proper storage, transportation, and usage
of all hardware component. In the event that the situation occurs, document it immediately and notify
the owner of the damaged component in order to determine whether it can be fixed/replaced under
warranty or if complete replacement is feasible.

Potential Risk: Members of the team deviate from the project schedule or team productivity
decreases.
Management: Ensure that everyone is on the task at all times by utilizing our communication and
planning tools and procedures. In the event that the situation occurs, call a meeting to discuss the
deviation and identify the necessary steps to return to the proper project schedule (and mitigate any
potential losses).

Potential Risk: Research efforts are consuming significant time.
Management: Research is inevitably part of the learning process; however, if research efforts are not
leading to the desired results, consider reaching out to other members of the team, pulling in an
external expert/consultant (a service offered by our client), or reaching out to our faculty advisor or
another faculty member for support.

Potential Risk: Sudden changes in requirements (scope creep)
Management: In order to prevent scope creep, the best course of action is to define a concrete set of
requirements and obtain written agreement (signatures) from all parties. In doing so, potential
instances of scope creep can be mitigated.

Page 15

Resource Requirements

***Note: All resources listed in this section were acquired via client funding.

● Embedded Program
○ Raspberry Pi - $35
○ UP Board - $100

● Cameras
○ Garmin VIRB 360 - $800
○ Ricoh Theta - $400

Functional Decomposition

Figure 1: System Block Diagram

Standards

During the design, development, testing, and maintenance phases, our team must adhere to
standards in categories such as protocols, design patterns, and documentation. By adhering to these
standards, we can ensure that our system will meet industry expectations of safety, security,
maintenance, and professionalism.

Many of the project’s hardware and software components will be developed around standard
communication and connectivity protocols such as IEEE 802 MAC (Medium Access Control), IEEE
802.3 (Wired Ethernet), and IEEE 802.11 (Wireless Ethernet). Each of these protocols is incredibly
important to our project, so it’s also important that we follow the standards surrounding them. Our
team has considered many of these standards and how they affect our project.

When implementing the system’s software components, our team will follow the code modularity and
readability practices which are relevant to the chosen programming languages. Being that our project
utilizes various third-party libraries, APIs, and SDKs, we will follow the coding standards and other

Page 16

official specifications for those outside resources. Our code is also available on Gitlab so that if a
change occurs we can approve or decline it. This is also how we can stay up to date with what
everyone is working on.

In regard to our documentation, we have strived to ensure that all our documents have roughly the
same layout and are well organized. Our team has organized the documents in such a way that if
someone else were to pick up the project, they could easily get caught up within a few hours. This is
entirely by design, due to one of our potential risks - a team member considering dropping the course.
Should we have a team member that decides to drop the course, and we get a new team member,
they will be able to get caught up and contribute efficiently.

Standard Protocols

Programming Practices

● Modular, well-commented code
● Utilize change management software such as Git

Documentation Standards

● A common theme for all documents
● Documented code and Git history
● All documents stored in a central location, available to everyone on the team

Ethical Practices

Based on our work so far, we’ve been able to follow the ethical practices for IEEE. Our team has
done very well in terms of working ethically. Some examples of this are:

● We communicate frequently and discuss issues as they arise,
● Communicate any major issues with the client as soon as possible,
● Ensure we’re all aware of safety issues outlined earlier in the Project Plan.

IEEE Standards and True 360

Throughout our working relationship with True 360, we’ve learned a lot about IEEE standards and
how they apply to our project. We’ve identified a few specific areas we’re applying IEEE Standards:

Software Quality Assurance Processes

● Defined test cases
● Defined validation scenarios
● Change management software which ensures that when code the is changed, multiple people

much approve of the changes

Systems and Software Lifecycle management

● Avoiding short-term solutions and having a future-thinking mindset
● Writing quality documentation and code comments so whoever works on the project next will

be able to catch up quickly

Page 17

● Understanding that technology is fairly new and working through a lot of technical issues

Requirements for Managers about Documentation

● Descriptive documentation for both the Project Plan and Design Document
● Regularly discuss plans and team updates
● Document weekly status reports

Deliverables

360° Webcam System

Our team is delivering a completed system in December 2018. This system consists of all the pieces
of hardware and software components integrated together to work as a functioning unit. This system
as a whole will capture of all the completed Non-Functional Requirements and Functional
requirements listed on Part 2 - Design section. It also ensures that any active constraints have been
met. The system is composed of various Microservices that integrate together to meet those
requirements. These Microservices and components will be discussed in further detail below.

Web Application

The web application is the main entry point into the system for the most part. It provides a User
Interface into the system, that both Zoo Staff members and True 360 Staff members can access. The
delivered Web Application will have User Registration that consists of an Invitation System for adding
new users, as requested by our client, in order to maintain control over users of the application. The
application will also provide an interface for administrative parts of the system, such as creating and
updating zoos, cameras, devices, and video recordings.

Computer Vision

The computer vision aspect of the project has changed a lot during the fall semester. This semester
was devoted to research and gathering a better understanding of what our steps need to be. We
created a foundational program that detects the motion in a given video clip, then saves that video for
the Zoo Staff to be able to view. This has allowed the zoo staff to reduce the number of hours that
they might have needed to pour through all of the original videos. This foundational system lays the
path out to many important Machine Learning use cases.

Page 18

Part 3 - Implementation

Page 19

Design Decisions

Local Implementation

Early in the project, our design was focused on a local implementation. This was mostly due to our
client’s requesting this way. However, we quickly learned that this conflicted with another
requirement, perhaps more valuable requirement, scalability. Our team agreed that it would be
feasible to create a scalable system, with a local server per zoo constraint. The idea of scalability is
what consistently drove our design into a more cloud-based solution as the project progressed. In
addition, we agreed that such a system design may have many technical issues when being set up,
as setting up a server at each zoo would be a manual task, prone to errors. Having a cloud-based
solution would mean that adding the system to a zoo would be mostly an automated or software task,
aside from installing the cameras at exhibits.

Page 20

Web Application to Camera Communication

Figure 2: Initial Interface Design

One big design decision change we had to make was how our system handles the communication
between the Web Application all the way to each embedded device that interfaces with its own
camera. The above figure shows the first feasible design approach that we came up with late in the
spring 2018 semester. The key service that will, later on, go to be replaced is the Pusher Server and
the Web Socket interface that is provided to the embedded board - which also later changed, see the
I/O Design section for more details. In summary, because of the changes to the overall design to a
more cloud-based approach, it was simply a better design choice to go with one main provider for our
services, which was AWS, instead of having various services scattered throughout different providers.
This allowed the system to communicate better and took on the cost-saving advantages that AWS
provides when internal services communicate. So the Pusher Server was replaced with SQS and to
an extent, with the combination of other microservices we’ve created, such as the Communication
Service. This gave us a more customizable platform to work on and more control over the end-to-end
system communication.

Computer Vision

In the spring semester, we discussed the idea of using Machine Learning to implement an animal
activity monitor. The original idea was to use Machine Learning techniques to create a foundation for
various use cases that involve animal activity monitoring. We discussed implementing a few different
use cases such as alerts to zookeepers if there was an abnormality in the animal’s behavior, animal
health tracking, and trash detection.

Page 21

When planning a Machine Learning/Computer Vision implementation, it’s incredibly important to keep
the end result in mind. One of the largest reasons for failure in Machine Learning projects is forgetting
the end result and building the wrong product. While this wasn’t the case for our project, but as the
client learned more from his clients, we were able to get a better idea of what needed to be
accomplished.

One of the things we learned from the client was that zoos aren’t actually interested in animal health
monitoring, as previously mentioned. Zoos prefer to physically check and care for their animals, and
creating this feature wouldn’t provide them with any actual value. Going from there, it was difficult to
come up with specific feature ideas that would provide value to the client.

As for what to do next, we considered how we could improve back-end processes for the end user.
One of the processes that we considered was how to improve the process of storing and using vast
amounts of video created by the cameras. Just to give you an example, if one camera recorded the
video for eight hours straight, it would likely produce around 200GB a day. This isn’t exactly practical
to upload, store, or view.

Our thought here was if we can’t develop the original use cases, we could develop something to help
reduce the amount of video we would need to store and view. We came up with the idea of creating a
computer vision aspect of the project that allows us to filter out uninteresting parts of the video.

Our process was fairly straightforward, we first wanted to create an algorithm that detected motion in
a given video clip. Then after we figured that out, we wanted to retrain a model to implement an
image recognition model.

Page 22

Work Breakdown

Figure 3: Work Breakdown

Page 23

Part 4 - Testing

Page 24

Testing Plan

General

We used GitLab continuous integration and continuous development tools for testing builds of the
entire project. Any time changes were committed to a branch, our testing server or virtual machine
started a build. Any pull requests also required a successful build before being merged into the
master branch.

Front-End

The front-end testing process involved the use of a build server. Whenever code changes were
pushed, the server allowed us to build the project and run various types of tests to validate the new
features. We focused on both code-based and interaction-based tests.

Back End

Our focus was to ensure a solid foundation so that other teams could continue development. We
focused on implementing an API testing framework to run tests during merges, thus ensuring that we
didn’t break any existing API routes during development, as well as that additional routes, were tested
on the fly.

Embedded

Our embedded program testing process involved installation of the embedded program on a
Raspberry Pi or other embedded board, connecting to a webcam, connecting to the microservices
architecture and other system components, and completing the footage capture process.

Computer Vision

The computer vision component was tested by creating test images to build a dataset to retrain a
TensorFlow image recognition model. We used a testing/training split of roughly 60% training and
40% testing, for the Machine Learning model. We were able to test the activity monitor by creating the
dataset that was able to detect whether the motion was present.

Page 25

Figure 4: Process Flow Diagram

System Testing

Archiving Video Test

● Goal: Meet functional requirement, “ IT staff must be able to view archived live streams”
● Verification Process

1. Live stream and archive video for 8 hours
2. Ensure video all video files have been stored in the server at the zoo
3. Check if all videos are accessible from the Web App
4. Check if a specified date & time is accessible

Outage Test

● Goal: Meet functional requirement, “IT staff should not have to physically access the devices
after outages to get stream back up ”

● Verification Process
1. Disconnect & reconnect power/network from the device or camera
2. Verify that device restarts and is listening to correct WebSocket Channel
3. Send a trigger/command from the Web App to the device
4. Ensure that the device picks up command and executes it

API Server Crash

● Goal: Meet non-functional requirement, “Application Services must be reliable ”
● Verification Process

1. Force restart server or kill the program
2. NodeJS server should automatically restart
3. Connection to Database & Pusher should be available via configurations
4. Hit API Endpoints via Web App or Postman to verify service is back up

Page 26

Part 5 - Related Work

Page 27

Market Survey of Related Products

After conducting a general observational survey of several zoos and aquariums, including the San
Diego Zoo and Blank Park Zoo (Des Moines), we discovered a common theme: webcams and
associated software are usually utilized by zoos and aquariums for hosting low-resolution video
streams on their main sites. These streams are meant to provide a simple way to get an up close and
personal view of a limited selection of animals. Unfortunately, the functionality provided by these
streams is limited to a simple static video pane on the web page. Thus, users and zoo/aquarium staff
have no way of utilizing the streamed footage for more useful purposes.

The Rationale for Our Project

The primary argument in favor of our project is that it expands upon the capabilities of the streaming
methods currently being used by zoos and aquariums. It provides a robust and intuitive user
interface, higher-resolution footage capture, footage management features, archiving, and “likeability”
curation using the computer vision component. As a result, the footage captured in animal exhibits
can be utilized for a wider array of applications such as creating educational content, marketing
material, and providing archives of animal behavior.

The Rationale for Related Products

The primary argument in favor of the implementations currently used by zoos and aquariums is fairly
trivial: simplicity. Setting up a webcam and connecting it to a static webpage provides a hassle-free
and maintenance-free way to add an element of interactive content to the facility’s website.

Page 28

Part 6 - Summary and Concluding Remarks

Page 29

Summary

Webcam setups currently used by zoos and aquariums provide limited functionality with respect to
interconnectivity, footage quality, and software features. Many of the solutions that are currently on
the market do not have the same 360° footage that we provide in our system. In collaboration with
True 360, our team aimed to provide zoos and aquariums with an easy-to-use 360° webcam system
for educational, animal health, and marketing purposes, each of which will provide new kinds of
business value to zoos and aquariums. Our solution removes the need for physical interaction with
each webcam and provides a wide array of software features, including centralized webcam control,
360° footage capture/archiving and live streaming, animal activity monitoring, and content curation.
While the underlying technology has been around for years, our utilization of new tools to build a new
360° webcam system for zoos and aquariums will enable them to interact with their exhibits like never
before.

Page 30

Appendix I - Operation Manual

Page 31

Getting Started

The purpose of this appendix is to guide developers in setting up the system. The system was
designed with dependencies on AWS SQS as the message broker, and AWS batch as the batch
processor management. As such we decided to host all our services, except authentication, in AWS.
If desired the system could be deployed elsewhere, but this appendix will not cover that. Finally,
CI/CD is an important part of our system, we decided to use Gitlabs builtin CI/CD service, which is
provided for free up to 2000 CI minutes per group per month (https://about.gitlab.com/pricing/). The
setup of CI/CD will also not be covered as this is dependent on what version control system the client
will use in the future. We strongly suggest that Gitlab be used, as our CI/CD scripts will be provided,
and avoiding Gitlab will require the development of new CI/CD scripts.

System Requirements

All of our services use docker to avoid any OS dependencies. Three of our services (domain-service,
communication-service, content-management-service) have the same CPU units and memory
requirements.

In Amazon ECS each CPU core (vCPU) is equal to 2048 CPU units. The three services at a minimum
will require 256 CPU units and 512 MiB of memory. These minimum requirements were sufficient for
our testing load and will require adjustments for production. We think it is preferable to find a medium
between scaling and hardware specs.

AWS batch requires the configuration instance type, maximum vCPU, desired vCPU, and minimum
vCPU. The fourth service, activity-monitor-service uses the optimal option for instance type. This
option will choose from the latest AWS C (Compute optimized), M (General purpose), R (Memory
optimized) instance families. We have decided to set the following ranges:

● Desired vCPU: 1, the number of vCPUs that each activity-monitor process will use.
● Maximum vCPU: 6, the maximum number of vCPU to create at a given point. For the following

settings, this translates to a maximum of 6 activity processes at a given point of time.
● Minimum vCPU: 0, this ensures that all unused vCPU is deleted if there are no jobs in the

queue.

Embedded Environment Setup

Running Embedded on the Board

To run the embedded on the board go to the scripts repo, where there will be a “raspi_setup” script
that will need to be executed before running the program. This script will install all the necessary
packages with the right versions.

At the end of the script, you will notice a group of export commands. These export commands need to
be copied and pasted, as they won't be persisted outside the context of “raspi_setup” script.

The following is the list of the environment variables and their usage:

● S3_BUCKET_NAME: this is this name of the root bucket in AWS
Page 32

https://about.gitlab.com/pricing/

● JOB_QUEUE: this is the name of the AWS Batch job queue
● JOB_DEFINITION: this is the name of the AWS Batch job definition
● AWS_DEFAULT_REGION: AWS region
● AWS_ACCESS_KEY_ID: the programmatic user key id
● AWS_SECRET_ACCESS_KEY_KEY: the programmatic user secret
● CAMERA: camera interface to use in the embedded program

○ For value (1) the embedded program will use the Garmin Virb class
○ For value (2) the embedded program will use the Mock class

● STREAMER: streamer interface to use in the embedded program
○ For value (1) the embedded program will use the FFMPEG interface

● CONNECTION:
○ For value (1) the embedded program will use the Pusher interface
○ For value (2) the embedded program will use the SQS interface

Running Embedded outside Board

There exist a “run_local” shell script that is in the embedded root dir, that will build and run the Docker
image. We decided to use Docker because it is a lot easier to test since all the packages will be
deleted when the Docker image is destroyed, thus not cluttering the developer's computer. As such
before you use the “run_local” script, you will need to download Docker to run the script successfully.

Embedded Board Registration

Regardless of where the embedded program is running (outside or inside the board), if the camera is
not registered in domain-service the program will log its registration AWS queue URL, this URL
includes the camera unique id as such
(https://queue.amazonaws.com/456445135125/registration_00000000-0000-0000-0000-0242ac1100
02_queue) where the bolded content is the unique id. This unique id would then be used on the web
application to register the camera to a zoo and exhibit.

The zoo and camera id will be persisted in true360/config/config.ini in the embedded directory. At the
moment, the only way to de-register a camera would be to set all values in the config.ini file to None.

Local Environment Setup

Running one of domain-service, communication-service, content-management-service locally
requires that frontend also is run locally. The front-end proxy should be configured to point to one or
all the service running locally. These routes are configured in src/lib/domain/index.js under the
frontend directory, where there exist three different variables for each service, domainEndpoint,
communicationsEndpoint, contentManagementEndpoint.

All services have a run_local.sh and an entry.app shell scripts provided in the root of the project to
help developers run those service quickly and correctly. The run_local.sh will first build the docker
image, and then run the image and set the environment to local. Entry.app will be executed after the
docker container is running, ensuring that overriding variables will persist.

Since all services are required to be running in AWS, the entry.app will export the following
environment variables if ENV is “local” (ENV is set to “local” in run_local.sh):

Page 33

https://queue.amazonaws.com/456445135125/registration_00000000-0000-0000-0000-0242ac110002_queue
https://queue.amazonaws.com/456445135125/registration_00000000-0000-0000-0000-0242ac110002_queue
https://queue.amazonaws.com/456445135125/registration_00000000-0000-0000-0000-0242ac110002_queue
https://queue.amazonaws.com/456445135125/registration_00000000-0000-0000-0000-0242ac110002_queue

● AWS_DEFAULT_REGION: This is set to “us-east-1” since all the other running services
running in “us-east-1”.

● AWS_ACCESS_KEY_ID: AWS user access key id.
● AWS_SECRET_ACCESS_KEY: AWS user secret key.

When running in AWS the above three variables are set automatically. Moreover, all four services use
the same AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, which belong to the AWS user
“LocalUserTest”. This user only has programmatic access only to AWS and is allowed to use all the
services that we need in AWS (SQS, S3, …).

In the case that these keys are lost, or developers want to create a user for each service instead of
sharing one user,

1. Refer to https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html on how to
create a user, make sure it has programmatic access only to AWS.

2. Refer to
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html on
how to change and add user permissions.

3. Refer to https://aws.amazon.com/blogs/security/wheres-my-secret-access-key on how to
retrieve user key and secret

4. Go to entry.app in the service that you want to run locally, and change
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY with the new key and secret that
were retrieved in step 3.

Running the Frontend requires less setup than running the other services, follow the README in
docs/README.md under the frontend directory.

Cloud Environment Setup

We made sure that running the environment on the cloud should be an easy process. Thus, we have
decided to use Terraform. Terraform is a tool for building, changing, and versioning infrastructure
safely and efficiently. Terraform can manage existing and popular service providers which includes
AWS. In our Gitlab group for true360, there is a repo designated for infrastructure, all that is required
from the developer is to run the build script, and the infrastructure will be automatically set up.

Figure 5: Gitlab CI/CD Pipelines

Page 34

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://aws.amazon.com/blogs/security/wheres-my-secret-access-key

Is indicated in the picture, below the play button, there are two commands infrastructure_destroy that
will destroy all the AWS infrastructure, and infrastructure_build to build all AWS infrastructure.

This process depends on some variables that need to be configured in Gitlab variables.

1. Head to the true360 Gitlab group
2. Go to setting
3. Go to CI/CD
4. Expand the variables section
5. Ensure you have the following variables

Figure 6: Gitlab Group CI/CD Variables

All the Gitlab continuous integration scripts depend on the variables above.

The sequence of building the project from nil is the following:

1. Execute Infrastructure infrastructure_build CI
2. Execute Frontend CI
3. Execute ALL other services CI (no order necessary)

The sequence of destroying the project from a running state is the following:

1. Execute Infrastructure infrastructure_destroy CI
2. Go to https://console.aws.amazon.com/ecs/home#/repositories and delete all the repositories

The main entry point of the infrastructure code is terraform/main.tf under infrastructure directory. The
current terraform script will create all services under public subnets.

The resulting architecture is pictured in the diagram below.

Page 35

https://console.aws.amazon.com/ecs/home#/repositories

Figure 7: AWS Cloud Architecture

Accessing the Source Code

Currently, all of the Source Code is located in a GitLab Group that contains all of the repositories for
the entire project. Valid authentication to git.ece.iastate.edu is required to be able to view the source
code for the project.

The link for the group is https://git.ece.iastate.edu/true360. In addition, our client will also be provided
with zipped & up to date source code for all projects.

Accessing AWS Services

Relevant resources in AWS:

● https://console.aws.amazon.com/ecs/home: contains all the clusters in the system. A cluster is
a collection of similar services. There should be four clusters,

○ True360-dev-domain-service-cluster
○ true360-dev-activity-monitor-batch_Batch_4c025800-0202-355f-9f90-0765a37560d1

(managed by AWS, therefore, this cluster is empty)
○ True360-dev-comm-service-cluster
○ True360-dev-content-mgmt-cluster

Each cluster only contains one running service for testing
● https://console.aws.amazon.com/ec2/v2/home#LoadBalancers: true360 load balancers
● https://console.aws.amazon.com/ec2/v2/home#TargetGroups: Running services status

Page 36

https://git.ece.iastate.edu/true360
https://console.aws.amazon.com/ecs/home
https://console.aws.amazon.com/ec2/v2/home#LoadBalancers
https://console.aws.amazon.com/ec2/v2/home#TargetGroups

● https://s3.console.aws.amazon.com/s3/home: true360 storage that contains the following:
○ True360 WebApp client
○ True360 Archives
○ Terraform remote state

● https://console.aws.amazon.com/rds/home: relational databases page

Associated Costs

ECS:

For 0.25 vCPU and a memory configuration of the following 0.5GB, 1GB, and 2GB.

Total vCPU charges = # of Tasks x # vCPUs x price per CPU-second x CPU duration per day
(seconds) x # of days

● # of Tasks: 3 tasks, 1 for each service
● # vCPUs: 0.250 x 3 services
● price per CPU-second: 0.00001406
● CPU duration per day (seconds): full day

Total vCPU charges = 3 x 0.75 x 0.00001406 x 86,400 x 30 = $81.99792

RDS:

For a db.t2.micro instance, the cost per hour is $0.017

S3:
First 50 TB / Month $0.023 per GB
Next 450 TB / Month $0.022 per GB
Over 500 TB / Month $0.021 per GB

Load Balancer:
$0.0225 per Application Load Balancer-hour (or partial hour)
$0.008 per LCU-hour (or partial hour)

For more information: https://aws.amazon.com/elasticloadbalancing/pricing/

Our average monthly cost has been ~100$ per month for the months November 2018 and October
2018.

Troubleshooting

For troubleshooting services running on the cloud,

1. Go to cloud watch page (https://console.aws.amazon.com/cloudwatch/home)
2. Select logs on the left-hand side
3. Select the relevant Log Group

After selecting “Log Group” logs are bundled according to a date and time, and when clicking on that
particular log, all log output is shown.

Page 37

https://s3.console.aws.amazon.com/s3/home
https://console.aws.amazon.com/rds/home
https://aws.amazon.com/elasticloadbalancing/pricing/
https://console.aws.amazon.com/cloudwatch/home

For troubleshooting service running locally, log output is always outputted to the terminal. Therefore,
no extra steps are necessary to troubleshoot locally.

Known Bugs and Other Issues

There is no ability to edit some existing or user-created information. For example, once a User has
been invited into the application, via the user invitation process, the created user currently does not
have a “User Profile” page. This means that an existing user is not able to go back and change any of
his profile information.

In our activity-monitor-service, we were only able to encode the processed videos in MPEG-4 codec.
Unfortunately, Chrome does not support the MPEG-4 codec, but we were able to view the processed
videos on Safari. As a workaround, we added a download button for each video that will enable users
to download the footage to view it on there client machine.

Page 38

Appendix II - Alternative Designs

Page 39

Alternative System Design I (CPRE 491): Local Implementation

Figure 8: Localized Design Approach

Alternative System Design II (CPRE 491): Initial Cloud Architecture

Figure 9: Initial Cloud Design

Page 40

How It Works

Each 360° camera is behind an interface provided by the Raspberry Pi. Each Raspberry Pi will have
its own WebSocket channel that it is subscribed to, where the backend can trigger events on, which
in turn the Raspberry Pi will send the command related to that event to the 360° camera. The
Raspberry Pi will run the FFmpeg library (transcoding software) which streams videos to YouTube as
well as an archive to a given path.

360° Webcams

The Garmin Virb is compacted live streaming webcam that provides good accessibility for the
developer to develop software around it. The webcam provides a REST API through WIFI. The
Garmin Virb is able to stream and take still pictures in different resolutions that the developer can
change through the provided REST API commands.

Storage Solution

The local or cloud-based solution that will archive 72 hours of the previous live stream from each
webcam. Consequently, zoo staff will be able to go back at most 72 hours to address any issues
related to animal exhibits. Finally, once a live stream is complete the machine learning algorithm will
be executed here.

Admin Web Application

Since different zoos will be using the same admin portal, the web application will be hosted on the
cloud. Users will be associated with a zoo, therefore, when a user logs in the Admin Portal they will
be able to manage (depending on the user permission) the system related to the zoo he/she works in.
Finally, users will be able to request a previous live stream if needed.

Node JS Server

Our first prototype on the back end was using Node JS. We have completed setting up the project
with a fully functional API. The project was broken down into an MVC structure. We also implemented
an ORM design to ensure modularity of the project going forward and to allow us to expand on our
API functionality quickly and efficiently. Currently, we have set up the migrations, models, seeders,
and controllers based on our Database Diagram below.

Database

Our initial prototype is using MySQL for the database. Currently, our design only includes the core
aspects of the application. We begin expanding as the project progresses. This is something that we
plan to do going forward. For now, we want to get the core functionality of the application and ensure
there is a good communication between our software and hardware components. From there, we will
expand on the React side of things, along with the necessary additions to the back end and database.

Page 41

Figure 10: Initial Database Design

Other

The Garmin Virb 360 is able to stream in 4K resolution. Additionally, the Raspberry Pi handles
synchronous streaming and archiving by using the FFmpeg library. The web application will use
Firebase Authentication to prevent people from messing around with zoo’s stream.

Page 42

Appendix III - Other Considerations

Page 43

Lessons Learned

Programming Languages

● Python
● Javascript
● Terraform
● NodeJS
● HTML
● SASS

Front-End Technologies

● React
● Redux
● CSS Zen Garden
● Webpack
● Javascript prettier

Back-End (Microservice) Technologies

● AWS SQS
● AWS S3
● AWS Batch
● AWS ECS
● Docker

Embedded Technologies

● FFmpeg
● Pusher

General Development Tools

● Git
● Gitlab version control
● Gitlab CI/CD

Administrative & Project Management

● Gitlab Boards
● Slack

Page 44

Appendix IV - Definitions

Page 45

Table 4: Definition Listings
Term Definition(s)

AWS Amazon Web Services

CI/CD Continuous Integration / Continuous Delivery

CV Computer Vision

ECS Elastic Container Service

ML Machine Learning

SQS Simple Queue Service

UI User Interface

Page 46

Appendix V - References

Page 47

“Build Something with Us.” Home | Garmin Developers, developer.garmin.com/.

Garmin, and Garmin Ltd. “Action Cameras | VIRB 360.” Garmin,
buy.garmin.com/en-US/US/p/562010.

“Product.” RICOH THETA, theta360.com/en/about/theta/v.html.

RICOH THETA Developers, developers.theta360.com/en/.

“Transport Your Audience: VR in 8K.” Insta360 Pro - Transport Your Audience: VR in 8K,
www.insta360.com/product/insta360-pro.

“True 360.” True 360, true-360.com/.

Page 48

